dictyBase Literature
Page Contents: Abstract

Ongay-Larios, Laura, Kawasaki, Laura, Vincent, Olivier, Coello, Gerardo, Coria, Roberto, Escalante, Ricardo, Dominguez-Martin, Eunice, (2018) ' IreA controls endoplasmic reticulum stress-induced autophagy and survival through homeostasis recovery. ' Mol. Cell. Biol.
   Reference full text
 
Abstract:The Unfolded Protein Response (UPR) is an adaptive pathway that restores cellular homeostasis after endoplasmic reticulum (ER) stress. The ER-resident kinase/ribonuclease Ire1 is the only UPR sensor conserved during evolution. Autophagy, a lysosomal degradative pathway, also contributes to the recovery of cell homeostasis after ER-stress but the interplay between these two pathways is still poorly understood. We describe the Dictyostelium discoideum ER-stress response and characterize its single bonafide Ire1 orthologue, IreA. We found that tunicamycin (TN) triggers a gene-expression reprogramming that increases the protein folding capacity of the ER and alleviates ER protein load. Further, IreA is required for cell-survival after TN-induced ER-stress and is responsible for nearly 40% of the transcriptional changes induced by TN. The response of Dictyostelium cells to ER-stress involves the combined activation of an IreA-dependent gene expression program and the autophagy pathway. These two pathways are independently activated in response to ER-stress but, interestingly, autophagy requires IreA at a later stage for proper autophagosome formation. We propose that unresolved ER-stress in cells lacking IreA causes structural alterations of the ER, leading to a late-stage blockade of autophagy clearance. This unexpected functional link may critically affect eukaryotic cell survival under ER-stress.
Status: aheadofprint Type: Journal article Source: PUBMED PubMed ID: 29632077

There are 10 'not yet curated' genes for this paper. DDB_G0276445 | atg1 | atg101 | atg13 | atg18 | cdcD | ifkA | ifkB | ireA | pgkA |